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Chapter 13
Variational Data Assimilation
for the Global Ocean

James A. Cummings and Ole Martin Smedstad

Abstract A fully three dimensional, multivariate, variational ocean data assimila-
tion system has been developed that produces simultaneous analyses of temperature,
salinity, geopotential and vector velocity. The analysis is run in real-time and
is being evaluated as the data assimilation component of the Hybrid Coordinate
Ocean Model (HYCOM) forecast system at the U.S. Naval Oceanographic Office.
Global prediction of the ocean weather requires that the ocean model is run at very
high resolution. Currently, global HYCOM is executed at 1/12 degree resolution
(~7 km mid-latitude grid mesh), with plans to move to a 1/25 degree resolution
rid in the near future (~3 km mid-latitude grid mesh). These high resolution global
rids present challenges for the analysis given the huge model state vector and the
ver increasing number of satellite and in situ ocean observations available for the
imilation. In this paper the development and evaluation of the new oceanographic
hree-dimensional variational (3DVAR) data assimilation is described. Special
phasis is placed on documenting the capabilities built into the 3DVAR to make
e system efficient for use in global HYCOM.

3;1 Introduction

ddy-resolving global ocean prediction requires high resolution since the charac-
istic scale of ocean eddies is on the order of a few tens of kilometers. Only
ently have sufficient data and computer power become available to nowcast
d forecast the ocean weather at eddy-resolving scales, including processes that
ontrol the surface mixed layer, the formation of ocean eddies, meandering ocean
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currents and fronts, and generation and propagation of coastally trapped wave
Hurlburt et al.(2008a) gives a good discussion of the requirements for an oce;
model to be eddy-resolving. High resolution global ocean forecast models prese
challcnges for the assimilation component of the forecasting system given the hy
model state vector and the ever increasing number of satellite and in situ oce
observations available for the assimilation. Accordingly, the global analysis has
be both computationally efficient and accurate to account for the oceanographi
features resolved by the high resolution model. At the same time the analysis m
use all of the available observations and create and maintain dynamically adjuste
corrections to the model forecast.

The purpose of this chapter is to provide an overvicw of a new variational oceg
data assimilation system that has been developed as an upgrade to an existip
multivariate optimum interpolation (MVOI) system (Cummings 2005). Compar
to the MVOI the 3DVAR algorithm has several advantages. First, the 3DVA
performs a global solution that does not require data selection. In the MV
observations are organized into overlapping analysis volumes and the solution
depend on how the volumes are defined. This is not the case in the 3DVAR, as
global solve allows all observations to influence all grid points, a requirement
an optimum analysis. Second, through the use of observation operators, 3DV,
can incorporate observed variables that are different from the model prognos
variables. Examples of this in the ocean are integral quantities, such as acous
travel time and altimetcr measures of sea surface height, and direct assimilati
of satellite radiances of sea surface temperature (SST) through radiative trans
modeling. Finally, 3DVAR permits more powerful and realistic formulations
the background error covariances, which control how information is spread fi
the observations to the model grid points and model levels. The error covaria
also ensure that observations of one model variable produce dynamically consis
corrections in the other model variables.

The 3DVAR referred to in this paper is the Navy Coupled Ocean Data As:
ilation (NCODA) system, version 3. NCODA 3DVAR is in operational use at
U.S. Navy oceanographic production centers: Fleet Numerical Meteorology
Oceanography Center (FNMOC) in Montercy, CA, and the Naval Oceanogr
Office (NAVOCEANQ) at the Stennis Space Center, MS. NCODA is tru
unified and flexible oceanographic analysis system. It is designed to meet all
ocean data analysis and assimilation requiremcnts using the same code. In
dimensional mode, NCODA provides SST and sca ice concentration analyse
lower boundary conditions of the Navy global and regional atmospheric for
models. In three-dimensional mode, it is executed in a sequential incrementalu
cycle with the Navy ocean forecast models: the Hybrid Coordinate Ocean M
(HYCOM) on the global scale, and the Navy Coastal Ocean Model (NCO)
the regional scale. Here, NCODA provides updated initial conditions of
temperature, salinity, and currents for the next run of the ocean forecast m
The analysis background fields, or first guess, are generated from a short-
ocean model forecast, and the 3DVAR computes dynamically consistent correc
to the first-guess fields using all of the observations that have become ava
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since the last analysis was made. Further, NCODA 3DVAR is globally relocatable
and has been integrated into the Coupled Ocean Atmosphere Mesoscale Prediction
System (COAMPS® 1, which is used by Navy for rapid environmental assessment.
In this mode of operation, the 3DVAR performs multi-scale analyses on nested,
successively higher resolution grids. Finally, NCODA provides the data assimilation
component for the WAVEWATCH wave model forecasting system at FNMOC
(Wittmann and Cummings 2005). In this mode of operation, NCODA computes
corrections to the model’s two-dimensional wave spectra from assimilation of
satellite altimeter and wave buoy observations of significant wave height.

The examples used in the paper are taken from NCODA 3DVAR analyses cycling
with global HYCOM. Sections 13.2 and 13.3 of the paper describe the assimilation
‘method and techniques used to specify the error covariances. Section 13.4 lists
the occan observing systems assimilated and outlines the data selection and data
pre-processing that is done for the real-time global forecast. Section 13.5 gives an

- overview of the entire NCODA system, including the diagnostic suite. Section 13.6
presents some verification results from global HYCOM. Section 13.7 describes
future capabilities and applications of the NCODA 3DVAR system, while Sect. 13.8
gives a summary.

13.2 Method

The method used in NCODA is an oceanographic implementation of the Navy
Variational Atmospheric Data Assimilation System (NAVDAS), a 3DVAR tech-
nique developed for Navy numerical weather prediction (NWP) systems (Daley
and Barker 2001). The oceanographic 3DVAR analysis variables are temperature,
salinity, geopotential (dynamic height), and u,v vector velocity components. All
ocean variables are analyzed simultaneously in three dimensions. The horizon-
I"correlations are multivariate in geopotential and velocity, thereby permitting
justments to the mass fields to be correlated with adjustments to the flow
ields. The velocity adjustments (or increments) are in geostrophic balance with
the geopotential increments, which, in turn, are in hydrostatic agreement with
e temperature and salinity increments. The multivariate aspects of the 3DVAR
ssimilation are discussed further in Sect. 13.3.3.

- The NCODA 3DVAR problem is formulated as:

Xa=xp+ P HT(HPyHT + R)~'[y — H(xp)) (13.1)
here x, is the analysis vector, Xy, is the background vector, Py is the positive-

efinite background error covariance matrix, H is the forward operator, R is the
bservation error covariance matrix, and y is the observation vector. At the present

0AMPS® s 4 registered trademark of the Naval Rescarch Laboratory
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time, the forward operator in NCODA is spatial interpolation performed in th
dimensions by fitting a surface to a 4 x 4 x 4 grid point target and evaluating
surface at the observation location. Thus, HPyHT is approximated directly by
background error covariance between observation locations, and P HT directly
the error covariance between observation and grid locations. For the purposes
discussion, the quantity [y—H(xp)] is referred to as the innovation vector, [y—H(x,
is the residual vector, and x,-X; is the increment (or correction) vector.

The observation vector contains all of the synoptic temperature, salinity 3
velocity observations that are within the geographic and time domains of
forecast model grid and update cycle. Observations can be assimilated at th
measurement times within the update cycle time window by comparison agaj
time dependent background fields using the first guess at appropriate time (FGA'
method. An advantage of the FGAT method is that it eliminates a component of
mean analysis error that occurs when comparing observations and forecasts not va
at the same time. As will be described in Sect. 13.6, the use of FGAT in real-ti
HYCOM allows for assimilation of late receipt observations. i

Equation (13.1) is the observation space form of the 3DVAR equation. A d
form of the 3DVAR is the analysis space algorithm, which is defined by ¢
model state vector on some regular grid. Courtier (1997) has shown that the tu
formulations are equivalent and give the same solution. However, as discussed
Daley and Barker (2000, 2001), there are advantages to the use of an observati
space approach in Navy ocean model applications. In the observation s
algorithm the matrix to be inverted (HP,HT 4 R)™' is dimensioned by the numb
of observations, while in the analysis space algorithm the matrix to be inverie
dimensioned by the number of grid locations. Given the high dimensionality
global ocean forecast model grids, and the relatively sparse ocean observati
available for the assimilation, an observation space 3DVAR algorithm will h
a clear computational advantage. Further, an observation space system is 1
flexible and can more easily be coupled to many prediction models. As
been discussed, NCODA must work equally well with multiple atmospheric
oceanographic prediction systems in a wide variety of applications, as well
wave model prediction system. Finally, due to the local nature of the observ
space algorithm, the background error covariances are multivariate and can
formulated and generalized in a straightforward manner. As will be shown,
aspect of the 3DVAR is an important feature of NCODA. On the other hand, anal
space systems typically restrict the background error covariances to be sequenc
univariate, one-dimensional digital filters, thereby ignoring the inherent multivari
nature of the background error correlations.

Solution of the observation space 3DVAR problem is done in two steps. First,
equation,

(HPyHT + R)z = [y — H(x)) (13

is solved for the vector z. Next, a post-multiplication step is performed by I
multiplying z using,
Xa=xp= PyHTz
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to obtain the correction ficld in grid point space. A pre-conditioned conjugate gradi-
ent deseent algorithm is used to solve (13.2) using block diagonal pre-conditioners.
The blocks are defined by decomposing the analysis grid into non-overlapping
partitions of a regular quilt laid over the analysis domain in model grid point
(i, ) space. The use of i, j blocks rather than latitude-longitude blocks allows
the analysis to be completely grid independent. The flexibility of this approach is
shown in Fig. 13.1 for the global HYCOM Aulantic basin analysis (sce Scct. 13.6
and Fig. 13.9 for a discussion of the HYCOM basins). A total of 1,935, 2,436,
and 1,147 blocks are defined for the global HYCOM Allantic, Indian, and Pacific
analysis regions, respectively, which use Mereator grid projections. Observations
are sorted into the blocks and the pre-conditioning matrix is formed from a
Choleski decomposition of the correlations between observations in the same
block. The Choleski decomposed block matrices are caleulated onee and stored
before application of the conjugate gradient deseent algorithm. Solution of the pre-
conditioned conjugate gradient for the vector z n (13.2) typically converges in 6-10
iterations. Determination of convergence is based on the norm of the gradient of the
cost function estimated at each iteration step. This gradient is a veetor the size of the
number of observations and the norm is the square root of the sum of the clements,
which are the residuals of the fit of the analysis to the innovations. In practiee,
convergenee is reached when the norm of the gradient is reduced by 2 orders of
magnitude. This is eonsidered to be sufficient because an inercasc in the number
of iterations only fits small-scale features. This may appear to be beneficial, but it
must be noted that the post-multiplication step is a spatially smoothing operation
when the background crror correlations are applied. Thus, the extra iterations in the
olver required to resolve small-scale features in the observations do not have much
fect on the final analyzed inerement field beeausc of the smoothing effect of the
ost-multiplicr.

Observation space 3DVAR algorithms converge quickly because very good pre-
onditioners can be devcloped. In fact, the pre-conditioner used in NCODA is
erfect. For example, NCODA is configured such that when the data count is less
han 2,000 the observation data block is defined as the entire analysis domain.
WVhen this global pre-conditioned data block is presented to the conjugate gradient
olver the algorithm converges in a single iteration. No further work by the solver is
eccssary. This sparse data pathway through the eode is often encountered when
CODA 3DVAR is executed on nested grids in the relocatable coupled model
stem where the innermost grid represents a small geographic area.

As noted by Daley and Barker (2001), partitioning of the observations into
locks has no cffeet on the final solution. The NCODA 3DVAR formulation is
aranteed to include correlations between all observations in all blocks, thereby
Chieving a global solution. After the vector z is obtained it is post-multiplied
y PyHT 10 create the analysis correction fields for cach analysis variable. This
p is performed using blocks in grid space that are defined differently from the
servation blocks used to eompute the solution vector z. To accommodate high
olution ocean model forecast grids and minimize computer memory resource
tquircments for the analysis, the grid space blocks are defined smaller by simply



308 J.A. Cummings and O.-M. Smegy

i (e il e g m
4L 38 Vil e 1 W A% T A S B
ANENEEEAIEEEAEA
IER AR E RS S
st

—t

RAMEARL Y
= ; -

'. e Lo,
W e
. .ﬂ.‘u h. 0
ERNBE i
. : L : LA,
&, J= NN , 11k Ny
7 I 2N ,‘.‘B N l*‘
ot - v 7 : 5 =B
L‘-' :qi g ) 0 L4 y 'f', Nt * 1 7
P i AEVERER S LRI REPEES R 1N,
7 v “te. i B BRI r ] ™ x‘,y' R N K
: el TLT LT T T L yuh [oaen] 4 aak 3
’ ] - (i L
o T by 118 %> O "
] A Irf NP ™
! et = 3

3
Fig. 13.1 Observation data blocks for HYCOM Ailantic basin grid. Blue lines give observati

block edges; observation locations are indicated by black dots. A total of 1,935 data blocks
defined (43 in the X direction, 45 in 1he Y direction)

sub-setting the previously defined observation blocks. Again, it must be emphasize
that partitioning the grid domain into blocks in the post multiplication does not affe¢
the final results. The correction fields are guaranteed to contain the correlatior
between all observations and all grid points, thereby creating a seamless an
continuous analysis.

Parallelization of the 3DVAR algorithm is achieved in three ways. The first
parallelization is done over the obscrvation-defined blocks in the pre-conditioner
the seeond parallelization is done over observation-defined blocks in the conjugaté
gradient solver, and the third parallelization is done over grid point-defined blocks
in the post-multiplication step (mapping from observation space to grid space). Th
number of processors used to exeeute the 3DVAR can be as few as one or as man}
as the maximum number of observation or grid node blocks. A load balancin
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algorithm is used to spread the work related to the block-dependent calculations
out evenly across the processors. In the conjugate gradient descent step, the work
load for an observation block is calculated as the sum of the observation-observation
interactions. In the post-multiplication step, the work estimate is based on the sum
of the observation-grid point intcractions. Observation and grid point blocks are
determined to be close enough to contribute to the solution if the block centers
are within 8 correlation length scales. Thus, for a given block size, the number of
observation-observation and observation-grid point block interactions varies with
the horizontal correlation length scales and will be more numerous where lcngth
scales are long. Further efficiency is achieved by keeping communication among
the processors minimal. To do this matrix elements are calculated, stored, and
used on each processor, they are never passed between processors. Only elements
of the solution and correction vectors scattered across the processors have to be
communicated and reassembled and, in the case of the solution vector, broadcast
for the next iteration. Note that memory utilization for the conjugate gradient solver
in the 3DVAR s reduced as the number of processors is increased. This feature
allows the 3DVAR to scale very well across many processors on large machines,
and run equally well on small platforms with limitcd memory.

3.3 Error Covariances

3

pecification of the background and observation error covariances in the assim-
tion is very important. As previously noted, the background error covariances
ontrol how information is spread from the observations to the model grid points and
odel levels, but they also ensure that observations of one model variable produce
ynamically consistent corrections in the other model variables. The background
Tor covariances in the NCODA 3DVAR are similar to the error covariances defined
r the MVOI, but with some notable exceptions. As in the MVOI, the error
variances in the 3DVAR are separated into a background error variance and a
mrelation. The correlation is further separated into a horizontal (Cy) and a vertical
v) component. Correlations are modeled as either second order auto-regressive
OAR) functions of the form,

Ch = (1 + s») exp(—s»)
C, = (1 + s,)exp(—sy) (13.4)
r Gaussian functions of the form,
Ch = exp(-s})
C, = exp(—s?) (13.5)

here s, and s, are the horizontal and vertical distances between observations or
bservations and grid points, normalized by the arithmetic mean of the horizontal or
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the vertical correlation length scales at the two locations. The horizontal corre]
length scales vary with location and the vertical correlation length scales vary y
depth and location in the analysis. As described in the subsequent sections,
correlation components evolve with time in accordance with information obya;
from the model forecast background valid at the update cycle interval. ]

13.3.1 Horizontal Correlations

The horizontal correlation length scales are set proportional to the first barocl
Rossby radius of deformation using estimates computed from the historical pr
archive by Chelton et al. (1998). Rossby length scales qualitatively characte
scales of ocean variability and vary from 10km at the poles to greater than 200 k;
the tropics. The Rossby length scales increase rapidly near the equator which all
for stretching of the zonal scales in the equatorial wave guide. Flow-dependen
introduced in the analysis by modifying the horizontal correlations with a te
computed from forecast model sea surface height (SSH) gradients. The fI
dependent tensor spreads innovations along rather than across the SSH conto
which are used as a proxy for the circulation field. Flow dependence is a desir.
outcome in the analysis, since error correlations across an ocean front are expe
to be characteristically shorter than error correlations along the front. Note
other gradient fields can be used as a flow-dependcnt tensor in the analysis,
as SST or potential vorticity (Martin et al. 2007). The flow dependent correl
tensor (Cy) is computed using either a SOAR or Gaussian model defined in (I
and (13.5), where the SSH difference between two locations is normalized
scalar that defincs the strength of the flow dependence. Because the flow dépen
correlations are computed directly from the forecast SSH fields they depend str
on the accuracy of the model forecast. This dependence may prove not (
very useful in practice if the forecast model fields are inaccurate. Accordingly.
normalization scalar can be set to a relatively large value in order to reduc
strength of the flow dependence in the analysis and prevent a model with systen
errors from adversely affecting the analysis. Alternatively, the flow dependence
be switched completely off. Figure 13.2 shows a zoom of the analysis increm
off South Africa from a global high resolution SST analysis executed using a
update cycle. The analysis has 12-km resolution at the equator, 9-km mid-latitt
and is a FNMOC contribution to the Group for High Resolution SST (GHRS!
Background SST gradients are used as the flow dependent tensor, with the result
the SST analysis increments are constrained by the meanders and eddies associd
with the Agulhas retroflection current. The increments are both positive and neg
along the front and eddy locations, indicating that application of the flow depen
tensor is a relatively weak constraint and the strength and position of features
change from one update cycle to the next in the analysis.

To account for the discontinuous and non-homogeneous influence of coastl'
in the analysis a second tensor is introduced (C,) that rotates and stretches horiz



[ FETEECE U
«©2 4 6 6 1012 1418 18 2022 24 28 280>

is example of flow dependent iensor based on SST gradients in Agulhas Current
alar value defining gradiem streagth of flow dependence set to 0.5°C. (a) analyzed
s, (b) analyzed SST field

tions along the coast while minimizing or removing correlations into the
9 all ohservations and model grid points are assigned an orthogonal
ice 10 land value based on a 1-km global coastlinc database. Land distances
er than some minimal value (say, 20km) arc set to the minimal value. This
fion results in land distance gradicnts greater than zero along coastlines and
erc. Similar to the flow dependence tensor, the coastline tenor is then
ed using the difference in land distance between two locations normalized
2 scalar that specifies the strength of the coastline dependence. Away from
goast (>20km) this difference is zero resulting in no modification of the
zontal correlaiions. However, in the vicinitly of the coast (<20 km) land distance
ences are non-zcro, resulting in C; < | and a modification of the horizontal
elations. Background crror correlations close to the coast are expected to be
otropic becausc horizontal advection from coastal currems will clongate the
prrections and spread the information along the coast. Figure 13.3 illustrates the
pastline tensor applied to an observation ~5 km from the coast in Monterey Bay. In
fis example, the horizontal correlations are specificd as homogenous with a length
of 30km. The cffect of the coastline tensor is clcarly seen as the correlations
jjust to promincnt coastal features like the Monterey peninsula to the south and
the rotation of the coastline to an cast-west oricntation north of the observation
peation.
. The total horizontal background crror correlation (Cy) is then computed as
the product of the 1wo correlation components and the two correlation tensors
“according to,

%

Cy = GG, CfCy (13.6)
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Fig. 13.3 Example of land
distance correlation tensor for
point 4.8 km from coast in
Monterey Bay, California,
USA. Observation point is
given by white X mark.
Horizomal length scales are
assumed homogenous at
30km. The land distance
tensor spreads the
correlations from the
observation point along the
contours of the Momerey Bay
coastline

13.3.2 Vertical Correlations

Vertical correlation length scales vary with location and depth and evolve fro
analysis cycle to the next in the 3DVAR. They are defined on the basis of ¢ith
(1) background density vertical gradients in pressure space, or (2) backgrou
density differences in isopycnal space. In the vertical density gradient option,
change in density stability eniterion is used to define a well-mixed layer. The chi
in density criterion 18 then scaled by the background vertical density gradient ate
grid location and grid level according to,

hy = p,/(3p/32)

where h, is the vertical correlation length scale, g, is the change in density critery
(~0.15kg m™), and dp/dz is the vertical density gradient. Surface mixed
depths, caleulated at each grid point using the same change in density critefia
(Karra et al. 2000), are spliced onto the three-dimensional vertical length scale
field computed using (13.7). With this modification, surface-only observations
decorrelate at the base of the spatially varying mixed layer. The vertical density
gradient correlations are computed each update cycle from the background deg-
sity fields, thereby allowing the vertical scales to evolve with time and capture:
changes in mixed layer, thermocline depths, and the formation of mode waters.
Overall, the method produces vertical correlation length scales that vary with depth
and location, and are long when the water column stratification is weak and short
when the water column is strongly stratified.
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In the isopyenal option, obscrvation or grid point differences in density are scaled
by ps to form a correlation. This procedure essentially derives the vertical corre-
Jations relative to a density vertical coordinate. Observations are more corrclated
along an isopycnal than across an isopycnal, which introduccs considerable flow
dependence into the correlations. The procedure is cost free and does not rcquire a
transformation of the model background to isopycnal coordinates. All that is needed
is knowledge of the density for any point of interest, which can be obtained from
the obscrvation itself or the model forecast. Use of the isopycnal vertical correlation
option is ideally suited for HYCOM, since each coordinate surface in the model is
assigned a reference isopycnal. Vertical correlation defined along isentropic surfaces
s well known in atmospheric data assimilation (c.g., Riishajgaard 1998). Note
that vertical correlations in the analysis arc calculated cither via a SOAR, (13.4)
or Gaussian, (13.5) function using lengths scales derived from cither the vertical
density gradient or isopycnal formulations.

Figure 13.4 gives cross scctions through the vertical correlation length scale field
and the model density field for the HYCOM Pacific domain (Sect. 13.6). The length
scales were computed using the vertical density gradient option with p, = 0.15. The
cross sections extend from the coast of Japan at 42°N, 140°E along a great circle
" path to the cquator at 0°N, 160°E. Figure 13.4a shows vertical correlation length
scales shorter ncar the surface and longer at depth in agrcement with the density
stratification (Fig. 13.4b). The influence of the Kuroshio front is clearly seen, with
longer length scales at increasingly shallower depths as the permanent thermocline
shoals towards the equator. Relatively longer length scales are also secn in the
17-19°C mode-water layer immcdiately south of the Kuroshio, which has relatively
uniform density at depths of 200-400m.

Il3.3.3 Multivariate Correlations

The horizontal and vertical correlation functions described above are used in the
alysis of temperature, salinity, and geopotential. Temperature and salinity are
alyzed as uncorrelated scalars, while the analysis of geopotential is multivariate
ith vclocity. Geopotential is computed in the analysis from vertical profiles of
cmperature and salinity by integrating the specific volume anomaly (Fofonoff
d Millard 1983) from a level of no motion (2,000m depth) to the surface. The
ultivariatc correlations require specification of a parameter y, which measures the
ivergence permitted in the velocity correlations, and a parameter ¢, which specifies
e strength of the geostrophic coupling of the vclocity/geopotential correlations.
ypically, y is set to a small, constant value (y = 0.05) that produces weakly
ivergent velocity increments and assumes that the divergence is not correlated
‘ith changes in thc mass field. The geostrophic coupling parameter ¢ varies with
0cation from O to 1. It is scaled to zero within 1° of latitude from the equator,
‘here geostrophy is not defined, and in shallow water (<50 m deep), where friction
ather than pressure gradient forces control ocean flow. The multivariate correlations
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Fig. 13.4 Cross sections of vertical correlation length scales and density from Pacific basin rung
global HYCOM. (a) Vertical length scales (m): (b) Density (kg/m”)

also include auto- and cross-correlations of the u, v vector velocity componge
However, at the present time, there are no operational sources of ocean
observations available for the assimilation, although the capability to assimil
velocity data is built into the 3DVAR system. A full derivation of the multivari
horizontal correlations is provided in Daley (1991). The multivaniate correlati
are derived from the first and second derivatives of the SOAR (or Gaussian) model
function and require precise calculation of the angles between any two locations i
order to guarantee a symmetric correlation matrix. '

13.3.4 Background Error Variances

Background error variances are poorly known in the ocean and are likely to be =
strongly dependent on model resolution and other factors, such as atmospheric
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forcing errors and occan model parameterization errors. In the analysis, the
round error variances (e2) vary with location, depth, and analysis variable.
riances arc computed prior to an analysis from a weighted time history of
ces in forecast ficlds valid at the update cycle interval and issued from a
of analyzed states according to,

n

e =) wi(xi = xe—1)? (13.8)
k=1

xx — Xk-1 arc the differences in model forecasts (indices indicating grid

jon and depth are omitted for clarity), k& is the update eycle index, n is

umber of update cycles into the past to use in the summation, and wy is

ight vector computed using a geometric series, wx = (1 — $)*~!, where

(ybically sct to 0.1. The background crror variances computed according to

.8) are normalized such that the weighted averages arc unbiased. In practice,

background error variances tend to evolve to a quasi-steady state over time.

model forecast difference fields include the influence of observations from the

milation, so in well observed areas the background crrors are consistent with

innovations (model-data errors at the update cycle interval). However, in the
¢ of poorly observed or strong flow arcas the background error variances are
¢ likely dominated by model variability arising from atmospheric forcing and
oclinic and barotropic instabilities. Figure 13.5 shows background temperature
r standard deviation computed using Eq. (13.8) for different vertical levels
he global HYCOM analysis domains (sec Sect. 13.6). Figure 13.6 shows the
ckground salinity error standard deviation and Fig. 13.7 the background velocity
or standard deviation at the surface. Relatively high background errors are evident
all depths in boundary current areas: Gulf Stream, Kuroshio, Agulhas, Brazil-
lvinas, East Australia. Surface salinity error levels are also large near some river
tflow areas, in tropical regions, and in the marginal ice zone around Antaretica
ring the Austral summer. Surface velocity error standard deviations tend to
e large in western boundary currents and in the inter-tropical convergence zone
TCZ) due to the variable wind and solar forcing in that arca.

The adaptive scheme implemented here is designed to provide background errors
at: (1) arc appropriate for the time interval at which data are inserted into the
odel; (2) are coherent with the variance of the innovation time series; (3) refleet
he variable skill of the different ocean forceast models that are used with the
analysis system; and (4) adjust quickly to new occan arcas when the analysis is
re-located in a rapid environmental assessment mode of operation. One difficulty
with this approach is that differences in model fields contain a mixture of fore-
cast and analysis error. Forecast errors result from initial condition, model, and
aimospheric forcing deficiencies, while analysis errors result from the fact that the
statistical parameters used in the analysis represent expected values and arc unlikely
to be correct at all places and at all times.
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Fig. 13.8 Temperature (°C) background error siandard deviations valid 20 Janvary 2012 @
global HYCOM analysis domains: Atlantic, Indian, and Pacific. (a) OM depth, (b) 150 M de
(¢) 300 M depth .

13.3.5 Observation Error Variances

The observation crrors and the background errors are assumed to be uncorrelatet
and errors associated with observations made at different locations and at differeat”
times are also assumed to be uncorrelated. As a result of these assumptions, the S
observation error covariance matrix R is set equal to | + E? along the diagonal
and zero elsewhere. Note that E2 represents observation error variances (¢2) not:
malized by the background error variances interpolated to the observation location
(E2 = el/cl). Observation errors are computed as the sum of a measurement
error and a representation error. Mcasurement errors reflect the accuracy of the 3
instruments and the ambicnt conditions in which the instruments operate. These =
errors are fairly well known for many ocean observing systems, although the
errors can change in time due to calibration drift of the instruments and other
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factors. Representation errors, however, are a function of the resolution of the model
= and the resolution of the observing network. For satellite retrievals with known
measurement footprints, representation errors are set equal to the gradient of the
background field at the observation location when the retrieval footprint exceeds the
model grid resolution. Representation error of profile observations consists of two
additive components. The first component is set proportional to the observed profile
vertical gradients of temperature and salinity as a proxy for uncertainty associated
with internal waves. The second component is estimated from the variability of
multiple observed profile level data averaged into layers defined by the model
vertical grid (see Sect. 13.4.2).

13.4 Ocean Observations

The analysis makes full use of all sources of the operational ocean observations.
Ocean observing systems assimilated by the 3DVAR are listed in Table 13.1, along
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Fig. 13.5 (continued)

with typical global data counts per day. All ocean observations are subjectiol
quality control (QC) procedures prior to assimilation. The need for quality 66§
is fundamental to a data assimilation system. Accepling erroncous data cang
an incorrect analysis, while rejecting extreme, but valid, data can miss impo
events. The NCODA 3DVAR analysis was co-developed and is tightly couple§l
an ocean data QC system. Cummings (2011) provides an overview of the NCODS
ocean data quality control procedures.

13.4.1 Surface Observations

Table 13.1 indicates that there are many high volume sources of satellite and in sity
SST, SSH, and sea ice observations. It is not uncommon to assimilate ~40 milliog®
satellite SST retrievals, ~2 million sea ice concentration retrievals, and ~500, 000
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Fig. 13.6 Surface salinity (PSU) background error standard deviations valid 20 January 2012 in
B giobal HYCOM analysis domains: Atlantic. Indian, and Pacific

i altimeter SSH observations in a single day. These high-density, surface-only, data
- types must be thinned prior to the analysis to remove redundancies in the data
and minimize horizontal correlations among the observations. The data thinning
i achieved by averaging innovations into bins with spatially varying sizes defined
using the ratio of horizontal correlation length scales and horizontal grid resolution.
Innovations are inversely weighted based on observation error in the data thinning
process, and in the case of SST observations the water mass of origin is maintained
(see Cummings 2005 for a discussion of the Bayesian water mass classification
scheme). The length scale to grid mesh ratio bin sizes automatically adjust to
changes in the spatially varying horizontal correlation length scales, but are never
smaller than the underlying model grid mesh. As a result, fewer data are thinned
as the grid resolution decrecases or as the correlation length scales shorten. This
adaptive feature of the data thinning process can be used to decrease (increase)
the amount of data thinning by artificially shortening (lengthening) the horizontal
correlation length scales given a fixed model grid. Note that simply increasing data
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Fig. 13.7 Surface velocity (cavs) background error standard deviations valid 20 Janvary 201
global HYCOM analysis domains: Atlantic, [ndian, and Pacific

density does not necessarily improve the analysis. More data will require
conjugate gradicnt iterations while, more importantly, it may not noticeably alterl
results given the smoothing operation of the post-multiplication step (sce discuss
in Sect. 13.2). Figure 13.8 shows an examplc of data thinning results for 6
satellite SST observations in the FNMOC GHRSST analysis. Even with jus
of SST data the various satellite missions and in situ sources show a high
of spatial overlap. The data thinning removes this data redundancy and cré
sampling palttern consistent with the horizontal correlation length scales dcﬁnd
the analysis. In this case, length scales are based on Rossby radius of defo
which varies significantly across the grid. As a result, there is increased dai
thinning near the equator where length scales are ~200km. Elsewhere, especia
at high latitude, the data thinning is much less, and satellite retricvals with footp
resolutions of 2 km and 8 km are directly assimilated without any spatial averagi
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Table 13.1 Data types assimilated in NCODA 3DVAR with typical daily data counts. Note that
the profile data counts are for the cntire profilc. Profilcs typically contain hundreds of levels that
are assimilated as unique latitude, longitude, level observations

f)ﬁ type Data source Specifications Number daily obs
Satellite SST NOAA-18 Infrared 2-km day, night 4,800,000
' NOAA-19 retrievals
NOAA-18 Infrared 8-km day, night, 800,000
NOAA-19 rclaxed day retrievals
AMSR-E Microwavc 25-km day, 3,600,000
night retricvals
METOP-A Infrared 2-km day, night 15,000,000
retrievals
METOP-A Infrared 8-km day, night, 450,000
relaxed day rctrievals
GOES E/'W Infrared 12-km day, night 2,000,000
retrievals
MetcoSat-2 Infrarcd 8-km day, night 220,000
retrievals
AATSR Infrared 1-km day, night 12,000,000
retrievals
In Situ SST Ships Engine room intake 6,500
Hull contact sensor 1,000
Bucket temperature 100
CMAN Station 100
Drifting Buoy 34,000
Fixed Buoy 7,000
Satellite altimeter Jason 1, 2 SSHA 150,000
Envisat
SWH 180,000
Sea ice concentration DMSPFI13, F14,  SSM/I 25-km retrievals 900,000
F1§
DMSP F16,F17,  SSMIS 25-km retricvals 1,200,000
F18 .
Drifting buoy Temperature 50
Fixed buoy 1,200
Argo 600
XBT 100
TESAC (CTD) 3,500
Drifting buoy Salinity 50
Fixed buoy 800
Argo 600
TESAC (CTD) 3,000

3.4.2  Profile Observations

eparation of profile observations for the assimilatton consists of several steps.
1st, observed profiles are extended to the bottom using the model forecast. The



Fig. 13.8 Data thinning of global SST data. Satellite and in silu sources SST show i
(blue daytime, green nightiime, red relaxed day satellite retrieval types). The SST data &
(in order from top to bottom): AMSR-E, Drifting and Fixed Buoy, GOES E/W, METO#

METOP LAC, MeteoSai-2, NOAA 18,19 GAC, NOAA 18,19 LAC, Surface Stq( gei
intake, bucket, hull contact sensor). Thinned data for assimilation is show in middle p
SST observation; red—frcezing sea waler under ice covered scas). Schematic of how 6o
lengths vary as a function of latitude shown on right

observed profile is merged to the forecast profile by selecting the depth at
the merge is complete based on the shape of the extracted forecast model |
This target depth is set to be the second zero crossing of the forecast)
curvature. Note that the merge can fail if a suitable target depth is nol fod
if the difference between the observed and model profile at the merge dep
large (>3°C for temperature; >0.1 PSU for salinity). Second, similar to
density surface-only data, profile observations are thinned in the vertical to
redundant data. The profile thinning is done by averaging temperature and
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